Можно и без формул! Тогда решение становится совсем простым!
В правильном треугольнике центры вписанной и описанной окружностей совпадают. Центр вписанной лежит на точке пересечения биссектрис треугольника, но в правильном треугольнике каждая из биссектрис является и медианой, следовательно, центр вписанной и описанной окружностей правильного треугольника – это и точка пересечения медиан этого треугольника. Медианы, пересекаясь, делятся как 2:1, считая от вершины треугольника. Получается, на радиус описанной окружности приходится две части, на радиус вписанной – одна часть, радиус описанной окружности равен двум радиусам вписанной R = 2r.
Разница между ними R – r = 2r – r = r = 7 см. То есть, 7 см и есть радиус вписанной окружности! Тогда радиус описанной окружности в два раза больше – это 14 см.
Прилагаю чертёж, по которому станет понятно.
Если с использованием формул, то смотрите на втором приложенном изображении. Формулы для R и r через сторону правильного треугольника известны.
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
Можно и без формул! Тогда решение становится совсем простым!
В правильном треугольнике центры вписанной и описанной окружностей совпадают. Центр вписанной лежит на точке пересечения биссектрис треугольника, но в правильном треугольнике каждая из биссектрис является и медианой, следовательно, центр вписанной и описанной окружностей правильного треугольника – это и точка пересечения медиан этого треугольника. Медианы, пересекаясь, делятся как 2:1, считая от вершины треугольника. Получается, на радиус описанной окружности приходится две части, на радиус вписанной – одна часть, радиус описанной окружности равен двум радиусам вписанной R = 2r.
Разница между ними R – r = 2r – r = r = 7 см. То есть, 7 см и есть радиус вписанной окружности! Тогда радиус описанной окружности в два раза больше – это 14 см.
Прилагаю чертёж, по которому станет понятно.
Если с использованием формул, то смотрите на втором приложенном изображении. Формулы для R и r через сторону правильного треугольника известны.