1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6
угол А=90 градусов,угол В=30 градусов АВ=6 см. В прямоугольном треугольнике катет, лежащий напротив угла в 30 градусов равна половине гипотенузы, значит:
выводим уравнение из теоремы Пифагора (сумма квадратов катетов равна квадрату гипотенузы) и (возьмем за Х катет, лежащий напротив угла в 30 градусов). Получаем:
x*x+6*6=4x*x
36=4x*x-x*x
36=3x*x
x*x=12
x=корень из 12 = 2 корней из 3.
Значит AB=6, AC= 2 корней из 3, a BC=4 корней из 3!