Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.противоположные грани равны между собой;
2.боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.
диагонали ромба равны 10√29 и 4√29 см.
Объяснение:
Найдём длину перпендикуляра из точки пересечения диагоналей ромба на сторону ромба (этот перпендикуляр равен половине высоты ромба).
По свойству высоты h прямоугольного треугольника она равна среднему геометрическому из длин отрезков, на которые эта высота делит гипотенузу.
h = √(4*25)= √100 = 10 см.
Теперь находим длины половин диагоналей ромба как гипотенузы прямоугольных треугольников с катетами 25 и h, и 4 и h.
(d1/2) = √(25² + 10²) = √(625 + 100) = √725 = 5√29 см.
(d2/2) = √(4² + 10²) = √(16 + 100) = √116 = 2√29 см.
рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.