1. В основании – прямоугольник, поэтому треугольник ABD – прямоугольный. По теореме Пифагора находится его гипотенуза.
BD−→−=AB2+AD2−−−−−−−−−−√=62+82−−−−−−√=10
2. Достроим четырехугольник KPRM, где P и R – середины BB1 и DD1 соответственно.
По признаку параллелограмма все четыре получившихся четырехугольника ABPK,BCMP,CMRD и AKRD – параллелограммы.
Следовательно, KPRM – тоже параллелограмм, причем равный основаниям параллелепипеда. А значит, и прямоугольник.
Диагонали прямоугольника KM=PR=BD= равны. Следовательно, KM−→−=10
3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
И CC1−→−=8
4. Рассмотрим треугольник B1CC1.
Его уголCC1B1=60° , его стороны CC1 и B1C1
Объяснение:
120см
Объяснение:
Дано: ВС = 40см; АЕ - биссектриса угла А; ВЕ = ЕС
Найти: периметр P прямоугольника АВСD
Биссектиса АЕ делит угол А прямоугольника АВСD пополам т.е.
∠BAЕ = 45°.
Поскольку ΔАВЕ прямоугольный (∠В = 90°), то оставшийся угол
∠ВЕА этого треугольника равен ∠ВЕА = ∠В - ∠ВАЕ = 90° - 45° = 45°.
Следовательно, ΔАВЕ равнобедренный, и АВ = ВЕ.
А поскольку ВЕ = 0,5ВС = 0,5 · 40 = 20(см), то и меньшая сторона АВ прямоугольника АВСD равна 20см.
Тогда периметр прямоугольника Р = 2 · (АВ + ВС) = 2 · (20 + 40) = 120(см)