Объяснение:
1) проитв большей стороны лежит больший угол, и наоборот
против меньшей стороны лежит меньший угол.
2) <1=75; <2=60; <3=180-(75+60)=45 =>
против ∠45°-лежит меньшая , против ∠75° -большая стороны Δ.
3) если Δ равнобедренный и прямоугольный, то угол при его вершине =90°, , два других угла по 45, ⇒ гипотенуза-основание лежащая против большего угла будет больше боковых сторон-катетов .
4) теорема: внешний угол Δ равен сумме двух других углов Δ, не смежных с ним.
рассуждаем два внешних угла равны ⇒ внутренние углы раны,
третий внешний угол вершине С в два раза меньше его внутреннего угла.( 180=х+2х) т.е. ∠С=120 ⇒ против ∠C и будет лежать большая сторона.
5) условия существования Δ : третья сторона должна быть меньше суммы двух других сторон, ⇒ в Δ основание =8, боковая сторона = 16
РΔ = 16+16+8=40
6) СДЕЛАЙ САМОСТОЯТЕЛЬНО
Найдите сумму координат вершины С параллелограмма ABCD, если известно, что А(-5; 2; 8), AB(-3; 4; 1) и BD(-2; 4; 1).
Объяснение:
Из условия А(-5; 2; 8), AB(-3; 4; 1) найдем координаты точки В:
х(АВ)= х(В)-х(А) у(АВ)= у(В)-у(А) z(АВ)= z(В)-z(А)
х(В)= х(АВ)+х(А) у(В)= у(АВ)+у(А) z(В)= у(АВ)+у(А)
х(В)= -3+(-5)=-8 у(В)= 4+2=6 z(В)= 1+8=9 .
В(-8; 6; 9).
Из условия В(-8; 6; 9) , BD(-2; 4; 1). найдем координаты точки D:
вычисления аналогичные :
х(D)= -2+(-8)=-10 у(D)= 4+6=10 z(D)= 1+9=10 .
D(-10; 10; 10).
Пусть координаты точки С(х;у;z), тогда координаты DC( х+10;у-10;z-10).
АВСD-параллелограмма, значит вектора равны АВ=DC⇒ координаты равны :х+10=-3 , у-10=4 , z-10=1
х= -13 , у=14, z=11 . Сумма этих чисел :-13+14+11 =12.