М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ibarabol318
ibarabol318
05.09.2020 02:28 •  Геометрия

Укажите номера верных утверждений. 1. площадь прямоугольного треугольника равна половине произведения его катетов. 2. квадрат любой стороны треугольника равен сумме квадратов двух других сторон. 3. высота треугольника соединяет вершину треугольника с серединой противоположной стороны.

👇
Ответ:
aktobe1
aktobe1
05.09.2020
3, 2 ответы правильные
4,6(46 оценок)
Ответ:
Якрутой111
Якрутой111
05.09.2020
1)Площадь прямоугольника находится п формуле :
S=\frac{1}{2}ab
Где А и В - катеты

2)Квадрат гипотенузы равен сумме квадратов катетов. Только в прямоугольном треугольнике

3) Высота в треугольнике - это перпендикуляр опущенный из вершины треугольника на противоположную сторону.

ответ: 1;
4,4(60 оценок)
Открыть все ответы
Ответ:
bondarenkoadeli
bondarenkoadeli
05.09.2020

1. Если построить ВСЕ ТРИ треугольника, образованные высотой пирамиды, апофемой и её проекцией на основание, то это будут прямоугольные треугольники с равными острыми углами, поскольку грани равнонаклонены к основанию. Поэтому равны все апофемы, и - главное - равны их проекции на основание.

То есть проекция вершины пирамиды - это точка, равноудаленная от сторон основания, то есть центр вписанной в основание окружности. 

2. В плоскости этого треугольника (можно взять любой из трех, они одинаковые) лежит и отрезок от точки на высоте до стороны основания, заданный в условии, - этот отрезок соединяет эту точку с вершиной апофемы, и образуется равнобедренный треугольник, внешний угол при вершине у которого равен π/2 - β (я считаю, что угол β - это угол между этим отрезком и плоскостью основания, в условии тут неточность - если задан угол с боковой гранью, то β' <=> π/4 - β/2 ). Поэтому острые углы этого равнобедренного треугольника равны π/4 - β/2, причем один из них - это угол между апофемой и высотой пирамиды.

Поэтому радиус вписанной в основание окружности равен 

r  = h*tg(π/4 - β/2);

3. С другой стороны, катеты прямоугольного треугольника в основании равны

a = r*(1 + tg(α/2)); b = r*(1 + ctg(α/2)); 

откуда площадь основания 

S = r^2*(1 + tg(α/2))*(1 + ctg(α/2))/2 = r^2*(1 + 1/sin(α)) = h^2*(1 + 1/sin(α))*(tg(π/4 - β/2))^2 = h^2*(1 + 1/sin(α))*(1 - sin(β))/(1 + sin(β));

Объем пирамиды равен 

V = S*h/3 = (h^3/3)*(1 + 1/sin(α))*(1 - sin(β))/(1 + sin(β));

4,6(4 оценок)
Ответ:
p1pal1
p1pal1
05.09.2020

1. Я продолжаю катеты за вершины острых углов - катет a  на величину второго катета b, и наоборот. Если через полученные точки, отстоящие от вершины прямого угла треугольника на (a + b), провести линии параллельно катетам до пересечения, то получится квадрат со стороной (a + b). 

2. Вершины квадрата, построенного на гипотенузе, лежат на сторонах построенного квадрата (подобное построение используется в одном из доказательств теоремы Пифагора).

3. Если повернуть построенный квадрат (со стороной (a + b) ) на 90° вокруг его центра, то он перейдет "сам в себя". При этом вершины вписанного в него квадрата, построенного на гипотенузе исходного треугольника, тоже перейдут в себя. Поэтому центры этих квадратов совпадают. 

4. Таким образом, отрезок p, соединяющий вершину прямого угла с центром квадрата, построенного на гипотенузе, равен половине диагонали квадрата со стороной (a + b) и образует с катетами углы в 45°. Его величина равна p = (a + b)√2/2;

5. Отрезок q, соединяющий центры квадратов, построенных на катетах, очевидно, проходит через вершину прямого угла, равен q = (a + b)√2/2 и тоже образует с катетами углы 45°. Поэтому отрезки p и q взаимно перпендикулярны, и можно считать p высотой в заданном в задаче треугольнике (при этом q - основание).

Окончательно S = p*q/2 = (a + b)^2/4 = (6 + 8)^2/4 = 49

4,4(50 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ