Объяснение:
ермин, введённый Международным астрономическим союзом в 2006[1] году для обозначения объектов Солнечной системы, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками:
Все прочитанные объекты, обращающиеся вокруг Солнца, за исключением спутников, должны быть отнесены к «малым телам Солнечной системы» ... В настоящее время в их список включено большинство астероидов Солнечной системы, большинство транснептуновых объектов (ТНО), а также кометы и прочие малые тела
Распределение кентавров и транснептуновых объектов по расстоянию от Солнца (увеличивается слева направо) и наклонению орбиты (увеличивается снизу вверх)
В настоящее время нет ясности, будет ли проведена для малых тел Солнечной системы нижняя граница размеров или к ним будут отнесены любые объекты до уровня метеороидов.
Естественные спутники, вообще говоря, отличаются от малых тел Солнечной системы только орбитами: они обращаются не вокруг Солнца, а вокруг других объектов Солнечной системы. Крупные спутники отличаются ещё и тем, что пребывают в гидростатическом равновесии (в результате чего имеют круглую форму).
Некоторые из крупнейших малых тел Солнечной системы в дальнейшем могут быть переклассифицированы в карликовые планеты, если в результате дальнейших исследований выяснится, что они находятся в состоянии гидростатического равновесия.
1)ответ:
V = 5√3/6 ед³.
Sбок = 144 ед².
Объяснение:
Судя по тому, что ∠АВС= 120°, параллелепипед не прямоугольный, а прямой. Это "две большие разницы".
Итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной ВС = 5 см, диагональю АС=7см и углом АВС = 120°. По теореме косинусов попробуем найти сторону АВ.
АС² =АВ²+ВС² - 2·АВ·ВС·Cos120. Cos120 = -Cos60 = - 1/2.
49 = AB²+25 - 2·AB·5·(-1/2) =>
АВ²+5·АВ -24 =0 => AB = 3cм
So = AB·BC·Sin120 = 3·5·√3/2.
V = So·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
Sбок = Р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
2)Обозначим радиус основания конуса R, высоту Н.
По заданию угол, тангенс которого равен Н/R, равен 30 градусов.
Н/R = tg30° = √3/3.
Отсюда Н = R√3/3 см.
Площадь сечения S = (1/2)*2R*H =RH = R*(R√3/3) = R²√3/3 см².
Приравняем по заданию: R²√3/3 = 9√3 см².
R² = 9*3, а R = 3√3 см.
Высота Н = R√3/3 = (3√3)*(√3/3) = 3 см.
Пусть a=7, b=17 и с=8√2.
В нашем случае 17²>7²+(8√2)², следовательно треугольник тупоугольный с тупым углом В.
Найдем площадь треугольника по формуле Герона:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр треугольника p=12+4√2.
S=√[(12+4√2)(5+4√2)(4√2-5)(12-4√2)] = √[(12²-(4√2)²)((4√2)²-5²)] =28 ед².
С другой стороны, S=(1/2)*a*b*Sin(a^b). Отсюда
Sin(<C)=2S/(a*b)=56/(7*17)≈0,47. <C=arcSin0,47≈28°.
А вот теперь уже можно и по теореме синусов:
с/SinC= a/SinA = b/Sinb.
SinA=a*SinC/c = 7*0,47/(8√2)≈0,29. <A=arcSin0,29≈17°.
SinB=b*SinC/c = 17*0,47/(8√2) ≈ 0,7. <B=arcSin0,7≈45° = 135° (так как
Sin(180°-a)=Sina, а по сумме углов треугольника <B - тупой).
Но можно и так:
Sin(<А)=2S/(b*с)=56/(17*(8√2)=≈0,29. <А=arcSin(0,29)=17°.
Sin(<В)=2S/(a*с)=56/(7*(8√2). <B=arcSin√2/2=45°=135°. И так как треугольник тупоугольный, <В=135°.
ответ: <A=17°, <B=135° и <C=28°.