Так как AD=CD, то BD- середина АС, тоесть медиана.По свойству равнобедренных треугольников медиана, проведённая к основанию является биссектрисой и высотой.Отсюда следует, что треугольник DBA равен треугольнику DBC по 1 признаку равенства треугольников ( по 2 сторонам и углу между ними) Чтд
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
Чтд