1). На произвольной прямой отложить отрезок, равный стороне АВ. Обозначить на концах отрезка вершины треугольника: точки А и В.
2) Из точки А как из центра раствором циркуля радиусом, равным длине стороны АС, начертить дугу.
3) Из т.В как из центра раствором циркуля радиусом, равным длине стороны ВС, начертить дугу до пересечения с первой дугой.
Точка пересечения дуг – вершина С искомого треугольника. Соединив А и С, В и С, получим треугольник со сторонами заданной длины.
б) Построение срединного перпендикулярна стандартное.
Из т.А и т.В как из центров провести полуокружности произвольного, но равного радиуса несколько больше половины АВ так, чтобы они пересеклись по обе стороны от АВ (т.К и т. Н).
Точки пересечения К и Н этих полуокружностей соединить.
Соединить А и Н, В и Н. Четырехугольник АКВН - ромб ( стороны равны взятому радиусу). Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам. =>
АМ=МВ и КМ перпендикулярно АВ.
КМ - срединный перпендикуляр к стороне АМ.
-----------
Точно так же делят отрезок пополам.
2.PK=NK, угол P=углу N, углы MKN=PKB(как вертикальные), значит тр. MKN=PKB по стороне и двум прилежащим углам.
3.АВ=АD, угол ВАС=DAC, AC - общая, значит тр. BAC=DAC по двум сторонам и углу между ними
4. BC=AD, угол CBD=ADB, BD - общая, значит тр. CBD=ADB по двум сторонам и углу между ними
5.угол MDF=BDF, DFM=DFB, DF - общая, значит тр. MDF=BDF по стороне и двум
прилежащим углам.
6.угол MAP=NPA, AP - общая, значит тр. MAP=NPA по стороне и двум прилежащим углам...