1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Пусть высота из точки В на AD будет h, а единица измерения сторон x, тогда
S = h*3*x;
x*h= 15*SQRT(3); С другой стороны, угол при основании pi/3, поэтому
h = 10*x*sin(pi/3) =x*5*SQRT(3); x = SQRT(3);
поэтому боковые стороны 10*SQRT(3) и 3*SQRT(3)
по теореме синусов
10*x/sin(pi/6)=AM/sin(2*pi/3) (в треугольнике АВМ - равнобедренном, кстати, боковые стороны 10*х, угол при основании pi/6)
АМ=30