Найдите площадь прямоугольного треугольника, если его большая сторона равна 27, а средняя по величине сторона равна 18. ответы а)405 б)3645 в)162√2 г)81√5
Обозн.ромб АВСД,и мы знаем что у ромба все стороны равны,а их у него четыре и поэтому сторона ромба будет 100:4=25см. Диаг.ромба перпенд. перес. и точка перес.делится пополам,и поэт. образ. прям.треуг. пускай он будет АВОпо теор.Пифагора половина второго диагоналя будет равна АО в квадрате=ВО в квадрате- АВв квадрате,подставляем значения и получаем,АО =под корнем 25 в квадр. - 24 в квадрате =49 из под корня выходит 7,значит вторая диагональ АС=14,отсюда S=1/2d1*d2,d1=48,d2=14,ответ 336 см в квадрате
Сначала найдем точку пересечения диагоналей параллелограмма, зная, что в этой точке диагонали делятся пополам. Координаты середины отрезка AС найдем по формуле: x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2. В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма О(3;2;1). Теперь по этой же формуле найдем координаты вершины D параллелограмма. (Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6) Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2} Длина вектора BD, или его модуль, находится по формуле: |BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14. ответ: длина диагонали BD равна 2√14.