1) BT-биссектриса
BD-высота
BE-медиана
MN-средняя линия
2) КЕ-общая
КА и КС- равные (по усл.)
т.к. КЕ биссектриса, значит углы АКЕ=ЕКС
по теореме, по двум сторонам и углу между ними, значит, что угол равен, прямые между ними тоже равны, прямые КА и КС равны по условию, а КЕ-общая, значит равная.
3) ВД- медиана и биссектриса по св-ву, из этого следует, что угол ВДС=90
угол А=С
АД=ДС
АВ=ВС
треугольники АВД и ДВС равны по двум сторонам и углу между ними
угол 1 и угол ВАД- смежные, из этого следует, угол 1 + угол ВАД=180
ВАД=180-106=74
4)а) АДВ=ВДС - по условию
АД=ДС
ВД- общая
АВ=ВС, из этого следует, что треугольники равны
ч.т.д.
Объяснение:
Объяснение:
1. а) BT биссектриса, б) ВД высота, в) ВЕ медиана, г) MN средняя линия
2. ∠AKE=∠CKE ( так как КЕ - биссектриса) KA=KC (по условию задачи) Сторона КЕ - общая. Значит ΔАКЕ=ΔСКЕ по двум равным сторонам и углу между ними (первый признак)
3.∠BAC смежный с ∠1, значит он равен 180°-106°=74°
∠BCA=∠BAC (в равнобедренном треугольнике углы при основании равны)
∠BCA=74°
В равнобедренном треугольнике медиана является высотой, значит ∠BDC=90°
4. У этих треугольников ADC и ABC одна сторона (AC) общая и прилежащие к ней углы равны между собой (по условию задачи), значит треугольники равны. (второй признак).
Стороны DC и BC равны, так как ΔADC=ΔABC
a= 4 см
S = (4²√3):4 = 4√3 см²
Проверим по формуле Герона:
S=√ (р (р-а)(р-а)(р-а))=√р (р-а)³
р =Р/2 =(4*3)/2 =12/2=6-полупериметр
S=√(6(6-4)³ )= √(6*2³)=√48 =√(16*3)=4√3 см²
ответ:S =4√3 см²