Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
...
Объяснение:
ПУсть угол 1=39°, тогда угол 3=141°.
Угол 2(который обозначен красной ручкой) и угол 3 вертикальные. Значит угол 2=углу 3=141°
Если прямые б и е параллельные, то отсюда следует, что угол 1 и угол 2 односторонние углы и их сумма должна равняться 180°, если же сумма односторонних углов не будет равна 180°, то прямые не параллельные.
Проверка:
Угол 1+угол 2=180°; 39°+141°=180°; 180°=180°.
Значит эти прямые параллельные.
К этому я прикрепила рисунок, чтобы вы не перепутались где какие углы и решение тоже там.