Мы можем найти третью сторону треугольника CDE по теореме косинусов. (формула прикреплена) Тоесть CE=VCD^2+DE^2-2CDxDExcos60 СE=V64+25-2x40x1/2 CE=V89-40=V49=7 То есть сторона CE равняется 7 дм. cos60=1/2 V - корень квадратный ^2 - число поднесенное квадрату x - знак умножения
Решила Fiofionina Решение : Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
Решила Fiofionina Решение : Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
Тоесть CE=VCD^2+DE^2-2CDxDExcos60
СE=V64+25-2x40x1/2
CE=V89-40=V49=7
То есть сторона CE равняется 7 дм.
cos60=1/2
V - корень квадратный
^2 - число поднесенное квадрату
x - знак умножения