1. 13
Объяснение:
1.
Проведём FH перпендикулярно DE следовательно треугольник FHE прямоугольный.Треугольник DCE прямоугольный следовательно треугольник FCE тоже прямоугольный.
EF- биссектриса следовательно угол 1 = углу 2.Следовательно FHE= FCE(по острому углу) следовательно FH=FC=13
ответ: 13
2.
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
(Рисунок в закрепе)
3.
И в прямоугольном треугольнике ACH
AH = 50/2 = 25
CH/AH = tg(∠A)
CH = AH*tg(∠A) = AH*tg(∠A)
sin(∠A)=12/13
tg(∠A) = sin(∠A)/cos(∠A) = sin(∠A)/√(1-sin²(∠A)) = 12/13/√(1-12²/13²) = 12/√(169-144) = 12/√25 = 12/5
CH = AH*tg(∠A) = 25*12/5 = 5*12 = 60