1. Треугольник прямоугольный, АВ=8 см.
2. HB=6 см.
3. AB=8 см
4. AOC=135°
5. Смотри на картинке
Объяснение:
1. Оставшийся угол можно вычислить вычитанием имеющихся из 180°
180-30-60=90° Стало быть треугольник прямоугольный.
В прямоугольном треугольнике, катет лежащий напротив угла в 30° равен половине гипотенузы, из чего можно вычислить AB=2*AC= 8см
2. В треугольнике ABC, катет CB, лежащий на против угла 30° равен половине гипотенузы, значит
СB=AB/2=24/2=12 см.
Оставшийся угол в треугольнике ABC равен 180-90-30=60°
В треугольнике CHB, угол HCB равен 180-90-60=30°
Аналогично первому треугольнику катет лежащий напротив угла в 30° равен половине гипотенузы, а именно
HB=CB/2=12/2=6 см.
3. Вычисляем оставшийся угол треугольника 180-90-60=30°
Аналогично первым двум заданиям в треугольнике BB1A,
AB=2BB1=2*4=8 см
4. В треугольнике AOC, углы OAC=BAC/2 и OCB=BCA/2, так как биссектрисы делят углы пополам.
OAC=BAC/2=60/2=30°
OCB=BCA/2=30/2=15°
Оставшийся угол AOC=180-30-15=135°
5. Для построения угла в 270 градусов можно например воспользоваться циркулем и линейкой,
1. Рисуем произвольную прямую,
2. Выбираем произвольную точку на ней.
3. чертим окружность произвольного радиуса на пересечении с прямой получаем точки A и B
4. Из точек A и B чертим дуги с одинаковым радиусом, большим чем радиус первой окружности, на пересечении дуг получаем точки D и C
5. Соединив D и C получаем перпендикуляр к изначальной прямой.
угол, а так как 90*3=270°, три части из четырех будут нужным углом.
1. Треугольник прямоугольный, АВ=8 см.
2. HB=6 см.
3. AB=8 см
4. AOC=135°
5. Смотри на картинке
Объяснение:
1. Оставшийся угол можно вычислить вычитанием имеющихся из 180°
180-30-60=90° Стало быть треугольник прямоугольный.
В прямоугольном треугольнике, катет лежащий напротив угла в 30° равен половине гипотенузы, из чего можно вычислить AB=2*AC= 8см
2. В треугольнике ABC, катет CB, лежащий на против угла 30° равен половине гипотенузы, значит
СB=AB/2=24/2=12 см.
Оставшийся угол в треугольнике ABC равен 180-90-30=60°
В треугольнике CHB, угол HCB равен 180-90-60=30°
Аналогично первому треугольнику катет лежащий напротив угла в 30° равен половине гипотенузы, а именно
HB=CB/2=12/2=6 см.
3. Вычисляем оставшийся угол треугольника 180-90-60=30°
Аналогично первым двум заданиям в треугольнике BB1A,
AB=2BB1=2*4=8 см
4. В треугольнике AOC, углы OAC=BAC/2 и OCB=BCA/2, так как биссектрисы делят углы пополам.
OAC=BAC/2=60/2=30°
OCB=BCA/2=30/2=15°
Оставшийся угол AOC=180-30-15=135°
5. Для построения угла в 270 градусов можно например воспользоваться циркулем и линейкой,
1. Рисуем произвольную прямую,
2. Выбираем произвольную точку на ней.
3. чертим окружность произвольного радиуса на пересечении с прямой получаем точки A и B
4. Из точек A и B чертим дуги с одинаковым радиусом, большим чем радиус первой окружности, на пересечении дуг получаем точки D и C
5. Соединив D и C получаем перпендикуляр к изначальной прямой.
угол, а так как 90*3=270°, три части из четырех будут нужным углом.
Опустим из точки О перпендикуляр на ребро SC в точку К.
Тогда угол ОКD и будет искомым углом между плоскостями ASC и DSC.
Найдём длину ОК из треугольника ОКС.
OK = ОС*sin 60°.
ОС = OD.
Треугольник ОКD - прямоугольный с прямым углом О.
Катет ОD - это половина диагонали основания (квадрата), он равен:
ОD = (1/2)ВD = (1/2)*(18√2) = 9√2.
OK = ОС*sin 60° = 9√2*(√3/2) = 9√6/2.
Тогда искомый угол ОКD равен:
tg ОКD = ОD/OK = 9√2/(9√6/2) = 2/√3 =2√3/3.
Угол ОКD = arg tg (2√3/3) = arc tg1,154701 = 0,857072 радиан = 49,10661°.