Зная Аксиому параллельных прямых, мы знаем, что накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей, равны. Обозначим углы - х и составим уравнение согласно условию задачи, которое гласит, что сумма углов х равна 150 градусов: х+х= 150; 2х=150; х=150/2; х=75 градусов. ответ: 75 градусов.
если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой. Доказательство: пусть а 1 и а 2 - две параллельные прямые и a - плоскость, перпендикулярная прямой а 1 . lib.com.ru/Exact Science/ma_a1.htm
Свойство перпендикулярной прямой и плоскости
Пусть a1 и a2 – две параллельные прямые и α - плоскость, перпендикулярная прямой a1. Докажем, что эта плоскость перпендикулярна и прямой a2. Проведем через точку A2 пересечения прямой a2 с плоскостью α произвольную прямую...
По свойствам углов параллелограма угол ВАД= углу ВСД и равен 30. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75 И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150