В равнобедренном треугольнике с периметром 32 см длина отрезка, соединяющая середины боковых сторон, равна 6 см. Найдите диаметр окружности, вписанной в этот треугольник
Объяснение:
Т.к. средняя линия 6 см , то основание 12 см , по т. о средней линии.
Тогда равные боковые стороны (32-12):2=10 ( см).
d=2r , а радиус можно найти из формулы S=1/2*P*r.
Площадь треугольника можно найти по ф. Герона ,
р=32:2=16 , р-а=16-10=6, р-в=16-10=6 , р-с=16-12=4,
S=√( 16 *6*6*4)=4*6*2=48 (см²)
S=1/2*P*r , 48=1/2*32*r , r=3 см ⇒ d=6 см
Формула Герона S= √p (p−a) (p−b) (p−c) , полупериметр p= 1 ÷2 *(a+b+c).
ДД1 как ребро равно 6, ВД - диагональ, равна 6√2.
Тогда площадь основания So=(1/2)*6*6√2 = 18√2.
Высота H заданной пирамиды - это половина диагонали грани куба, равна: H = 6√2/2 = 3√2.
Теперь находим объём:
V = (1/3)*So*H = (1/3)*18√2*3√2 = 36.