Объяснение:
Решается с применением теоремы: биссектриса, опущенная на сторону треугольника, делит её на отрезки в сотношением, равным отношению двух других сторон треугольника.
1)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (20 - х).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{20-x}=\frac{10}{15}\\ 15x = 10(20-x)\\ 15x = 200-10x\\ 15x + 10x = 200\\ 25x = 200\\ x = 8\\ AD=8 \\ DC=12\\\end{gathered}
DC
AD
=
BC
AB
20−x
x
=
15
10
15x=10(20−x)
15x=200−10x
15x+10x=200
25x=200
x=8
AD=8
DC=12
2)
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{8}{5}=\frac{16}{BC}\\ BC = \frac{16*5}{8}\\ BC = 10\\\end{gathered}
DC
AD
=
BC
AB
5
8
=
BC
16
BC=
8
16∗5
BC=10
3)
пусть Х - длина отрезка AD:
AD = х, тогда СD = (х+1).
Составим пропорцию по теореме:
\begin{gathered}\frac{AD}{DC}=\frac{AB}{BC}\\ \frac{x}{x+1}=\frac{2}{7}\\ 7x = 2(x+1)\\ 7x = 2x+2\\ 5x = 2 \\ x = 0.4\\ AD=0.4 \\ DC=1.4\\ AC=AD+DC=0.4+1.4=1.8\\\end{gathered}
DC
AD
=
BC
AB
x+1
x
=
7
2
7x=2(x+1)
7x=2x+2
5x=2
x=0.4
AD=0.4
DC=1.4
AC=AD+DC=0.4+1.4=1.8
Дано:
окружность;
хорда = 6 √ 2;
хорда стягивает дугу в 90 градусов;
Найти: длину дуги и длину окружности;
Если хорда стягивает дугу в 90 градусов, отсюда следует, что она является стороной квадрата вписанного в окружность.
Из формулы хорда = R √ 2 найдем R/
Подставим известные значения, и получим:
6 √ 2 = R √ 2;
R = 6 * √2 / √2;
Числитель и знаменатель в дроби сокращаем на корень из 6, тогда получим:
R = 6;
Теперь найдем длину дуги и длину окружности:
Длина окружности равна C= 2 * 3 , 14 * 6 = 37 , 68;
Длина дуги равна L = 37 , 68 / 4 = 9 , 42.
Объяснение:
Отрезок, соединяющий середины сторон треугольника - это средняя линия треугольника. Она параллельна стороне треугольника и равна его половине. так что нам придётся искать сторону АС. Её половина - это ответ на наш вопрос.
ΔАВК . по т. Пифагора АК² = 50² - 14² = 36*64, ⇒ АК = 48
МH = 24