А - сторона h - высота β - угол между сторонами высота h = a*sin(β) диагональ по теореме косинусов d₁² = 2*a²-2a²cos(β) решаем совместно 40² = 2*a²-2a²cos(β) 24 = a*sin(β) --- sin²(β) = (24/a)² cos²(β) = 1-(24/a)² cos²(β) = (a²-24²)/a² (2a²-1600)/(2a²) = cos(β) (a²-800)/a² = cos(β) (a²-800)²/a⁴ = cos²(β) (a²-800)²/a⁴ = (a²-24²)/a² (a²-800)² = (a²-24²)*a² a⁴ - 1600a² + 640000 = a⁴ - 576a² 640000 - 1024a² = 0 625 - a² = 0 a = √625 = 25 - сторону нашли, хорошо :) И площадь S = a*h = 25*24 = 600 Вторая диагональ по теореме косинусов, учитывая, что cos(π-β) = -cos(β) d₂² = 2*a²+2a²cos(β) 40² = 2*a²+2a²cos(β) 1600 - 2*a² = 2a²cos(β) 800 - a² = a²cos(β) (800 - a²)/a² = cos(β) (800 - a²)²/a⁴ = cos²(β) собственно, дальше можно не решать, т.к. вариант для первой диагонали и второй на этом этапе становится эквивалентным, т.к. (800 - a²)² = (a² - 800)² ответ - 600
1) расстояние от центра до одного из катетов =2,5 см - это средняя линия треугольника и,значит,другой равен 5 см, а второй катет находим по теореме Пифагора 13² = 5² +х ² х² = 169 -25 х² = 144 х = 12 2) треугольник АСЕ прямоугольный , у которого одна сторона равна 4, другая 8 а, третья по теореме Пифагора 8² = 4² + х² х² = 64 - 16 х² = 48 х = 4√3 радиус вписанной окружности найдем из площади треугольника 1/2 Р*r = 1/2 ab 1/2 (4 +8 +4√3)*r = 1/2 *4 *4√3 (12 +4√3)*r = 16√3 (3 +√3)*r = 4√3 r = 4√3/(3+√3)? избавимся от иррациональности в знаменателе r = 2*(√3 -1)
Обозначим данный треугольник буквами ABC, одну из его биссектрис - AM, остальные биссектрисы - BH и CK. Данный треугольник также является равнобедренным. По свойству биссектрисы, проведенной из вершины равнобедренного треугольника, AM также будет являться его высотой и медианой. Значит, так как сторона BC также равна 14 корней из 3, то BM =(14 корней из 3)/2 = (14 и 2 сокращаются) 7 корней из 3. Так как угол ABM = 90 градусам, то по теореме Пифагора AB^2 = AM^2 + BM^2; 588 = AM^2 + 147; AM^2 = 588-147; AM^2 = 441; AM = 21. Биссектрисы равностороннего треугольника равны, значит, AM = BH = CK. ответ: 21;21;21.
h - высота
β - угол между сторонами
высота
h = a*sin(β)
диагональ по теореме косинусов
d₁² = 2*a²-2a²cos(β)
решаем совместно
40² = 2*a²-2a²cos(β)
24 = a*sin(β)
---
sin²(β) = (24/a)²
cos²(β) = 1-(24/a)²
cos²(β) = (a²-24²)/a²
(2a²-1600)/(2a²) = cos(β)
(a²-800)/a² = cos(β)
(a²-800)²/a⁴ = cos²(β)
(a²-800)²/a⁴ = (a²-24²)/a²
(a²-800)² = (a²-24²)*a²
a⁴ - 1600a² + 640000 = a⁴ - 576a²
640000 - 1024a² = 0
625 - a² = 0
a = √625 = 25 - сторону нашли, хорошо :)
И площадь
S = a*h = 25*24 = 600
Вторая диагональ по теореме косинусов, учитывая, что cos(π-β) = -cos(β)
d₂² = 2*a²+2a²cos(β)
40² = 2*a²+2a²cos(β)
1600 - 2*a² = 2a²cos(β)
800 - a² = a²cos(β)
(800 - a²)/a² = cos(β)
(800 - a²)²/a⁴ = cos²(β)
собственно, дальше можно не решать, т.к. вариант для первой диагонали и второй на этом этапе становится эквивалентным, т.к.
(800 - a²)² = (a² - 800)²
ответ - 600