Построение к решениям заданий 1, 2 и 3 см. на фото.
1) 1¹ - проекция точки пересечения прямой и плоскости, т. к. плоскость фронтально проецирующая. Горизонтальную проекцию точки пересечения можно найти с третьей проекции.
Расстояние от оси х до точки 1 взято с профильной проекции и отмечено фигурной скобкой.
Точка n¹ находится ниже а¹b¹c¹, значит на горизонтальной проекции n и часть прямой до точки пересечения невидимая.
2) g и g₁¹- проекции горизонтали, f и f¹ - проекции фронтали.
3) Т.к. ВЕ:ЕС=1:2, отступим отрезок е¹с¹ в два раза больше b¹е¹. Получим точку с¹. АВСD -параллелограмм, значит проекции противоположных сторон а¹b¹с¹d¹ и аbсd параллельны.
АЕ - высота, следовательно ек перпендикулярен горизонтальной проекции горизонтали bc. Сносим на проекцию ек точку а и достраиваем параллелограмм.
Надеюсь,что вам. Желаю удачи!
дано: паралелограм ABCD построен на векторах а и b как на сторонах. Известно, что модуль вектора а равен 3, модуль вектора b равен 5, модуль векторов а+b равен 7.
найти: величину угла между векторами a и b(в градусах)
Объяснение:
Дано: ABCD- параллелограмм, построен на векторах а и b как на сторонах. Известно, что модуль вектора| а |=3, | b|=5, | а+b|=7.
Найти: величину угла между векторами a и b
Решение
Пусть АВ=а (вектора), ВС=b(вектора). Тогда суммой двух векторов, по правилу треугольника АВ+ВС=АС (вектора). По условию АВ+ВС=а+b(вектора), поэтому
АС= а+b(вектора), а |АС|= |а+b|=7 (вектора).
В ABC вектора ВС=АД .Тогда углом между векторами а и b будет ∠ВАD=180°-∠АВС.
ΔАВС, АВ=3,ВС=5, АС=7.
По т. косинусов :
АС²=АВ²+ВС²-2*АВ*ВС*cosВ,
49=9+25-30*cosВ,
cosВ=-0,5
∠В=120 , а значит ∠ВАD=180°-120°=60°.
Пусть a и b - катеты треугольника; с- гипотенуза
m, n - части на которые делит гипотенузу, высота проведенная с вершины прямого угла к гипотенузе, тогда
c=n+m
c=5+20
c=25
a^2=cn
a^2=25*5=125
a=√(125)=5√3
b^2=cm
b^2=25*20=500
b=√(500)=10√5