Пусть х-одна сторона из двух одинаковых, у-третья сторона периметр =2х+у=50 х/у=2/1 следовательно х=2у. подставляем в периметр 2*2у+у=50 5у=50 у=10 значит х=2*10=20
DB перпендикулярно к плоскости, следовательно, перпендикулярно любой прямой, лежащей в этой плоскости. Вспомним, что угол между двумя плоскостями есть угол между двумя перпендикулярами, проведёнными в этих плоскостях в одну точку общей прямой, по которой эти плоскости пересекаются. AC - общая прямая, по которой пересекаются плоскости ABC и DAC. Строим перпендикуляры. Треугольник ABC: из точки B проведём высоту BH на сторону AC. Треугольник ABC - равнобедренный (AB=BC - по условию), следовательно, BH - медиана и биссектриса. Нас, конечно же, интересует медиана. Треугольник DAC: из точки D проведём высоту DH на сторону AC. Треугольник DAC - равнобедренный (DA=DC - как равные наклонные равных проекций), следовательно, DH - медиана и биссектриса. Угол DHB - искомый.
Внешний угол - острый => смежный внутренний угол - тупой (сумма смежных углов 180°). Угол при основании равнобедренного треугольника не может быть тупым (углы при основании равнобедренного треугольника равны, сумма двух тупых углов больше 180°, сумма углов треугольника 180°) => тупой угол лежит против основания. В треугольнике против большего угла лежит большая сторона => основание больше боковой стороны.
периметр =2х+у=50
х/у=2/1 следовательно х=2у.
подставляем в периметр 2*2у+у=50 5у=50 у=10
значит х=2*10=20