В правильной четырехугольной пирамиде MABCD, все ребра которой равны 1,боковые рёбра - равносторонние треугольники. Их высота - это апофема А. Она равна 1*cos 30° = √3/2. Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД. В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды. d = a√2 = 1*√2 = √2. По теореме косинусов: cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3. Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен: <M = arc cos(1/3) = 1,230959 радиан = 70,52878°.
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.