Дано: сторона а основания пирамиды равна 3 см, боковое ребро L образует с основанием угол α = 45 градусов.
Сторона a основания правильной шестиугольной пирамиды равна радиусу R описанной около основания окружности и равна проекции OA бокового ребра L на основание. Отсюда можем найти величину H высоты пирамиды. Н = a*tg α = 3*1 = 3 см. Площадь So основания равна: So = 3√3a²/2 = 3√3*9/2 = 27√3/2. Теперь находим искомый объём V пирамиды: V = (1/3)SoH = (1/3)*(27√3/2)*3 = 27√3/2 ≈ 23,382686 см³.
АВСД - паралллелограмм. Проведем биссектрису, например из угла А, и пусть эта биссектриса разделила сторону ВС, например (потому что, может разделить и СД) на отрезки 14 и 7. Точка пересечения этой самой биссектрисы с ВС пусть будет М. Треугольник АВМ равнобедренный (надеюсь, не надо пояснять почему) Значит сторона АВ = 14. ВС = 14 + 7 + 21 (это из условия) . Ну и так как противоположные стороны параллелограмма попарно равны, а периметр - это сумма всех сторон, Р = 2 (АВ + ВС) То есть Р = 2 (14 + 21) = 70.
Один внутренний и и один внешний угол многоугольника, взятые при одной вершине, составляют развернутый угол. ⇒ Их сумма равна 180°. Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы. Если внешний угол принять равным х, то внутренний будет х+100°⇒ х+х+100°=180° 2х=80° х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.
боковое ребро L образует с основанием угол α = 45 градусов.
Сторона a основания правильной шестиугольной пирамиды равна радиусу R описанной около основания окружности и равна проекции OA бокового ребра L на основание.
Отсюда можем найти величину H высоты пирамиды.
Н = a*tg α = 3*1 = 3 см.
Площадь So основания равна:
So = 3√3a²/2 = 3√3*9/2 = 27√3/2.
Теперь находим искомый объём V пирамиды:
V = (1/3)SoH = (1/3)*(27√3/2)*3 = 27√3/2 ≈ 23,382686 см³.