1.Так как прямые а и б параллельны, а угол КВА и угол ВАD - накрест лежащие при этих прямых и секущей АВ, то угол КВА равен углу ВАD, т.е. угол BAD = углу КВА = 37 градусов
2. Так как BD перпендикулярна b(это мы можем понять зная что сторона BD образует со прямой b угол 90 градусов- там нарисован квадратик), то угол BDA=90 градусов
2.Рассмотрим треугольник АВD. Нам известно из 2 пункта что угол BDA равен 90 градусов и из первого пункта известно, что угол BAD = 37 градусов. Так как в любом треугольнике сумма всех углов равна 180 градусов, то, зная значения двух углов мы можем найти третий угол - BAD=180-37(BAD)-90(ADB)=53 градуса ответ: угол ВDA=90 градусов, угол BAD=37 градусов, угол ABD=53 градуса
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Надеюсь правильно