№2. DABC – тетраэдр. М - середина АD. МК||(АВС). МК=3 см. Найдите длину ребра DC этого тетраэдра.
Тетраэдр — простейший многогранник, гранями которого являются четыре треугольника, т.е. треугольная пирамида. В условии не указаны длины ребер DABC. Поэтому решение даётся для правильного тетраэдра, все ребра которого равны.
МК||(АВС). МК лежит в плоскости ∆ АDC. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. ⇒ МК║АВ. Так как М – середина АD, а МК||АВ, то МК - средняя линия ∆ АDB и равна половине АВ ⇒ AD=АВ=2•МК=6 см.
* * *
№3. ОАВ - прямоугольный треугольник (∠В=90°), ∠ АОВ=60°, АО=8 см, OF⊥АОВ). Найдите расстояние от точки D до прямой АВ, если OF=3 см.
Расстоянием от точки до прямой является длина отрезка, проведенного из данной точки перпендикулярно данной прямой. Треугольник АОВ прямоугольный, ОВ⊥ВА и является проекцией наклонной FB. По т. о 3-х перпендикулярах FB⊥АВ, поэтому является искомым расстоянием.
FО перпендикулярна плоскости ∆ АОВ. Если прямая, пересекающая плоскость, перпендикулярна этой плоскости, то она перпендикулярна каждой прямой, которая лежит в данной плоскости. ⇒ Треугольник FOB прямоугольный. FO=3 см (дано). ОВ=АО•cos60°=4см. В ∆ FOB по т.Пифагора FВ=√(FO²+OB²)=√(9+16)=5 см
а) (-2;0) - центр окружности, радиус окружности равен 3.
б) (0; 4) - центр окружности, радиус окружности равен .
в) (5; -7) - центр окружности, радиус окружности равен 4.
Объяснение:
Уравнение окружности имеет вид: (x-a)²+(y-b)²=R². Здесь центр окружности (a; b) . R - радиус окружности.
а) (-2; 0) -центр окружности, R²=9. R²=3². R=3.
б) (0; 4) - центр окружности, ,
.
в) (5; -7) - центр окружности, R²=16, , R=4.
Заметим, что по условию задачи радиус всегда должен быть положительным. То есть при извлечении корня выбираем только арифметический корень
360°/n=36°
n=10