ответ: Пусть ABC — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Объяснение: Из теоремы следует, что у любого треугольника не меньше двух острых углов. Действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°.
1. в) 1440°
2. а) 84 см²
3. г) 108 см²
Объяснение:
1. Суммы углов выпуклого n-угольника = 180°(n-2)
Для n = 10, Сумма углов = 180°*8 = 1440°
2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
a² = (b/2)² + h² => b = 2*√(a² - h²) = 2*√15² - 9² = 2*12 = 24
S = (1/2)*24*h = 108 см²
Длина окружности: С=2πR
2×3,14×R=84
R=84÷6,28=13,4 (примерно)
d=2R
d=2×13,4=26,8
S=πR^2
S=179,56π