окей я добавил фото с рисунками
часть 1
1. 3)
2.
дано:
δавс
∠а-112°
найти:
∠в
находим угол при основании
1)180-112=68°
углы при основании равны, зная это находим третий угол
2)∠=180-68*2=44°
ответ: 44°
3.
дано:
δавс
∠в=30°
ас=3 см
найти:
вс
сторона, лежащая напротив угла в 30 в 2 раза меньше гипотенузы, зная это
вс=3*2=6 см
ответ: 6 см
4.
дано:
окружность с центром о
ав-хорда
∠оав=48°
найти:
∠аов
если соединить точки хорды с центром получим равнобедренный треугольник, зная, что углы у него при основании равны, считаем угол аов
∠аов=180-48*2=84°
ответ: 84°
часть 2
5.
дано:
δавс
найти:
∠при основании
углы при основании равны
пусть угол при основании будет х°, значит противолежащий основанию 7х°, исходя из этого составим уравнение
7х+х+х=180
решаем как линейное уравнение
9х=180
х=180: 9
х=20
ответ: 20°
В прямоуг. треуг. против угла в 30° лежит катет, равный половине гипотенузы, т.е. в ΔАВС против угла В лежит катет АС, пусть он равен х, тогда гипотенуза АВ = 2х, а биссектриса является средним пропорциональным между отрезками, на которые она разбивает сторону СВ, т.е. КС/КВ=АС/АВ, КС пусть равен у, тогда КВ равен (18-у), Значит, у/(18-у)=1/2. Или по основному свойству пропорции произведение крайних равно произведению средних членов, т.е. 2у=18-у.
Или 3у=18, откуда у=6. КС =6, значит, АК, как гипотенуза в треуг. АСК в два раза больше, чем катет СК, лежащий против угла в 30°, т.к. ∠КАС =(1/2)*угла САВ, равного 60°. Поэтому АК = 12.
ответ Биссектриса равна 12.
9×6=54