А(4) и В(10), |4-10|=6
Пошаговое объяснение:
Определим координаты точек A и B:
1) Справа от точки 0 на единичной дальности отмечена число 1, что означает справа от точки 0 направление положительное и цена деления равна 1;
2) точка А отдалена от точки 0 на 4 единицы в положительном направлении, поэтому имеет координату 4, то есть А(4);
3) точка В отдалена от точки 0 на 10 единицы в положительном направлении, поэтому имеет координату 10, то есть В(10).
Расстояние между двумя точками А(x₁) и В(x₂) определяется по формуле AB= |x₁-x₂|. Поэтому расстояние между точками А(4) и В(10) равна |4-10|.
С другой стороны, по рисунку видно, что между точками А(4) и В(10) находится 6 единичных отрезков, поэтому расстояние между точками А(4) и В(10) равно 6.
Тогда |4-10|=6.
Объяснение:
Сторона треугольника АВ = "а". Пусть точка О - точка пересечения биссектрис. Опустим перпендикуляр ОН на сторону АВ. Пусть в прямоугольном треугольнике АОН катет АН = х. Тогда в прямоугольном треугольнике ВОН катет ВН = (а-х). Выразим радиус r вписанной окружности (общий катет треугольников) через второй катет и угол, прилежащий к этому катету. r = x*tg(A/2) и r = (a-x)*tg(B/2). Приравняем оба выражения.
x*tg(A/2) = (a-x)*tg(B/2) => x = a*tg(B/2)/(tg(A/2)+tg(B/2)).
Тогда r = a*tg(B/2)*tg(A/2)/(tg(A/2)+tg(B/2)).
Найдем биссектрисы АО и ВО из треугольников АОН и ВОН:
АО = r/Sin(A/2) = a*tg(A/2)*tg(B/2)/(Sin(A/2)(tg(A/2)+tg(B/2))).
BO = r/Sin(B/2) = a*tg(A/2)*tg(B/2)/(Sin(B/2)(tg(A/2)+tg(B/2))).