АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Развернутый угол - угол, обе стороны которого лежат на прямой. градусная величина развернутого угла 180° если пересекаются две прямые, они образуют две пары неразвернутых углов. у каждой пары одна сторона общая, а две другие являются продолжением одна другой и вместе составляют развернутый угол. такие углы называются смежными, их сумма равна 180°. сумма данных углов равна 126°, следовательно, они не являются смежными. несмежные углы, образованные при пересечении двух прямых, – вертикальные и равны между собой. каждый из данных вертикальных углов равен половине их суммы: 126°: 2=63° смежные с ними углы - тоже неразвернутые и по отношению друг к другу - вертикальные. каждый из них равен 180°-63°=117° вариант решения. сумма углов, образованных пересечением двух прямых, равна 360° если сумма двух из них 126°, сумма двух других 360°-126°=234° поскольку углы попарно равны, величина меньших –126°: 2=63°, больших –117°.
2й = 110-15-30=65
1=3 = 180-110=70
Объяснение: