В любом 4угольнике, вписанном в окружность, сумма противоположных углов 180 градусов. Поэтому углы 110 и 70 попарно противоположны. Значит, углы по 70 градусов - соседние, и оба по 110 - тоже.
Отсюда следует, что 2 стороны 4угольника параллельны, а другие 2 - равны между собой. То есть с такими углами в окружность можно вписать только равнобедренную трапецию. В условии можно было не говорить, что это трапеция, а только "вписанный 4угольник с углами 70, 70, 110, 110" ответ был бы тот же.
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
Вписанный угол, который опирается на диаметр, равен 90 градусов. Углы К и F следовательно равны 90 градусов. Треугольники MKN и MFN - прямоугольные. Они равны по общей гипотенузе и катету KN = FN. А в равных треугольниках против равных сторон лежат равные углы. Против стороны FN лежит угол FMN, а против стороны KN лежит угол KMN. Стороны равны, значит равны и углы. Но, если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то и третьи углы у них равны. Значит, угол MNF равен углу MNK.
В любом 4угольнике, вписанном в окружность, сумма противоположных углов 180 градусов. Поэтому углы 110 и 70 попарно противоположны. Значит, углы по 70 градусов - соседние, и оба по 110 - тоже.
Отсюда следует, что 2 стороны 4угольника параллельны, а другие 2 - равны между собой. То есть с такими углами в окружность можно вписать только равнобедренную трапецию. В условии можно было не говорить, что это трапеция, а только "вписанный 4угольник с углами 70, 70, 110, 110" ответ был бы тот же.