В равнобедренном треугольнике синус угла при основании равен 8/17. Найти синус угла при вершине. Обозначим в равнобедренном треугольнике угол при основании как b а угол при вершине как 2а.Проведем из вершины треугольника высоту которая одновременно будет являтся биссектрисой. Треугольник образованый боковой стороной основанием и высотой будет прямоугольным. Угол в вершине этого треугольника равен a, а при основании и боковой стороне b. Углы а и b связаны отношением а =пи/2 - b. sin(a) = sin(пи/2-b) =cos(b) =корень(1-sin^2(b)) =корень(1-(8/17)^2) =15/17 cos(a)= cos(пи/2-b) =sin(b)= 8/17 Нам необходимо найти sin(2a) поэтому можно записать, что sin(2a) =2sin(a)*cos(a) =2*(15/17)*(8/17) =240/289 Проверим простыми расчетами sin(b)=8/17 или b =28,07 градусов 2а =180-2b =180-2*28,07 =123,85 градусов sin(123,85) =0,8304 240/289 =0,8304 ответ:240/289
Обычным методом (не координатным) тут надо немного потрудиться :) Пирамида A1BTA имеет объем V = AA1*AB*AT/6 = 1/12; если найти площадь треугольника A1TB, то и высота пирамиды к этой грани найдется :). Эту площадь легче всего искать так. Пусть М - середина А1В = √2, поскольку A1T = BT, то ТМ - высота А1ВТ к А1В. ТМ находится из треугольника МАТ, АТ = 1/2; MA =√2/2; => МТ = √3/2; Площадь А1ВТ = S = А1В*ТМ/2 = √2*√3/4 = √6/4; отсюда h = 3*V/S = (3/12)/(√6/4) = 1/√6;
Для сравнения - координатный метод дает ответ сам собой. Уравнение плоскости 2x+y+z =1 пишется сразу (это уравнение плоскости "в отрезках", как оси расположены - очевидно - AD это ось X и так далее); ортогональный вектор (2,1,1) имеет норму √6; то есть уравнение плоскости имеет вид nr = 1/√6; где r = (x,y,z); единичный вектор нормали n = (2/√6, 1/√6, 1/√6); в правой части стоит искомое расстояние от начала координат - точки А (0,0,0) до плоскости.