рассмотрим треугольник BHC. в нем гипотенуза ВС-80 см.
катет лежащий напротив угла 30 градусов равен половине гипотенузы, в данном случае катет НС равен половине гипотезы(80:40=2)и соответственно, угол В= 30 º.
треугольник ВСА равнобедренный,из его вершины С проведена высота, а в равнобедренном треугольнике она преобретает свойства биссектрисы и медианы,в данном случае интересна биссектриса ,так как она поделит угол С пополам. значит, Угол В=30º, Угол ВНС=90, можем найти угол ВСН=180-120=60, а угол С= 60+60=120º.
угол А=В так как треугольник ВСА равнобедренный.
А=30,В=30,C=120
20°, 70°, 90°.
Объяснение:
Так как медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. Рассмотрим треугольник, образованный медианой и высотой. Угол между медианой и высотой = 50°, угол, который образует высота со стороной, к которой она проведена, равен 90°. Тогда третий угол в рассматриваемом треугольнике равен 40° (180 - 90 - 50). Теперь рассмотрим треугольник, BCB1, он равнобедренный, так как BB1 = B1C. Значит, что углы B1BC и B1CB равны. Угол CB1B, как мы нашли, равен 40° . Следовательно, углы BB1 и B1C равны по (180-40)/2 градусов, т.е. по 70°. Мы определили, что в треугольнике ABC один из углов прямой, а второй равен 70°. Значит третий угол равен 180° - 90° - 70° = 20°.