Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
Расстояние от точки до прямой находится на перпендикуляре к прямой))) основания трапеции параллельны, т.е. для них перпендикуляр общий... этот перпендикуляр будет состоять из двух высот для треугольников, опирающихся на основания трапеции... одно основание меньше, другое больше --- это дано))) треугольники, опирающиеся на основания трапеции подобны --- у них равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции))) следовательно, существует коэффициент подобия, равный отношению сторон, в том числе и оснований трапеции... k = a / b, a < b ---> k ≠ 1 этот же коэффициент связывает и высоты подобных треугольников, и получим, что в меньшем треугольнике и высота меньше))) ЧиТД
am=cm=a1m1=c1m1.
Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам:
- ab=a1b1 по условию;
- bm=b1m1 по условию;
- am=a1m1 как только что доказано.
У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой.
Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними:
- bm=b1m1 по условию;
- сm=c1m1 как было показано выше;
- углы bmc и b1m1c1 равны как доказано выше.
У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1.
Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.