Объяснение:
Уравнение окружности имеет вид:
(x-x0)²+(y-y0)²=r²
Где (х0;у0) - координаты центра. r- радиус.
Подставив вместо х и у координаты данных точек получаем систему трех уравнений с тремя неизвестными:
для упрощения записи, вместо х0 напишу х, а вместо у0 напишу у:
(-3-x)²+y²=r²
(1-x)²+(3-y)²=r²
(5-x)²+y²=r²
вычтем из первого уравнения третье:
(-3-x)²-(5-x)²=0
9+6x+x²=25-10x+x²
16x=16
x=1
тогда получаем :
16+y²=r²
(3-y)²=r²
16+y²-(3-y)²=0
16+y²=9-6y+y²
6y=-7
y=-7/6
Тогда r²=820/49
Итак уравнение окружности имеет вид:
(x-1)²+(y+7/6)²=820/49
13. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔМСА и ΔМКА равны по общей гипотенузе и острому углу. Соответственные элементы в треугольниках равны. Следовательно, и МС=МК=13см.
ответ: 13см.
14. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔКАМ и ΔЕАМ равны по общей гипотенузе АМ и острым углам. Соответственные элементы равны. Следовательно, МЕ=МК=13см.
ответ: 13см.
15. Катет, лежащий против угла в 30° равен половине гипотенузы.
Угол А = 180-(40+40+70)=30°. Гипотенуза МА = 14см. МD = 14:2 = 7см.
ответ: 7см.
16. Катет, лежащий против угла в 30° равен половине гипотенузы.
Треугольник ВМА р/б, МN - биссектриса. Треугольник СВМ равносторонний, все углы по 60°. Угол ВМD=30°. Следовательно, ∠СВА = 90°. Угол А = 90°-60°=30°.
Аналогично 15 задаче - 8:2=4см.
ответ: 4см.
полупериметр треугольника основания равен
р=(а+в+с)/2
р=(15+20+25)/2=30
площадь треугольника по формуле Герона-Архимеда равна
S=корень(р(р-а)(р-в)(р-с))
S=корень(30*(30-15)*(30-20)*(30-25))=150
площадь основания равна 150
меньшая высота треугольника равна h=2S/c
h=2*150/25=12
обьем призмы равен V=Sh
V=150*12=1 800