2) В равнобедренном треугольнике углы при основании равны. Сумма градусных мер углов треугольника равна 180°. Значит, угол при вершине равен 180° - 55° - 55° = 70°. ответ: 70°.
3) Пусть х -- одна часть угла. Тогда угол А = 7х, угол В = 5х, угол С = 6х. Сумма градусных мер углов треугольника равна 180°. Тогда: 7х + 5х + 6х = 180 18х = 180 х = 10°
Получаем: угол А = 7*10 = 70°, угол В = 5*10 = 50°, угол С = 6*10 = 60°. ответ: 70°, 50°, 60°.
Геометрический S(AMB)=1/2MA·MB·sin(AMB)=(√3/4)MA·MB, т.к. ∠AMB=∠ACB=60°. Отсюда MA·MB=4S(AMB)/√3 и аналогично из площадей треугольников AMC и СМВ получим MA·MC=4S(AMC)/√3, MC·MB=4S(СMВ)/√3. По теореме косинусов для тех же треугольников: AB²=MA²+MB²-MA·MB=MA²+MB²-(4/√3)·S(AMB); AС²=MA²+MС²+MA·MС=MA²+MС²-(4/√3)·S(AMС); СB²=MС²+MB²-MС·MB=MС²+MB²-(4/√3)·S(СMB). Сложим эти равенства: AB²+AС²+СB²=2(MA²+MB²+MС²)-(4/√3)·(S(AMB)-S(AMС)+S(СMB)). Но AB=AС=СB=√3, и значит AB²+AС²+СB²=3+3+3=9, S(AMB)+S(СMB)-S(AMС)=S(ABC)=(3√3)/4. Поэтому 9=2(MA²+MB²+MС²)-(4/√3)·(3√3)/4, т.е. MA²+MB²+MС²=(9+3)/2=6.
Тригонометрический Если R - радиус, О - центр окружности и ∠AOM=2x, то MА=2Rsin(x), MB=2Rsin(60°+x), MC=2Rsin(60°-x). Значит MA²+MB²+MС²=4R²(sin²(x)+sin²(60°+x)+sin²(60°-x)). После раскрытия синусов суммы и упрощения получим 6R², что и требовалось.
m= 1/2 ×
с - наименьшая сторона
1/2 ×