Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р. Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам. Но NC=3, значит, NP=1,5. Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ. ответ: 2:3
Внутренние накрест лежащие углы равны, их две пары, первая пара, например, угол 1 и 3 будут равны по50град. каждый, а вторая пара, к примеру, 2и4 углы будут равны по 130 град., т.к. углы 1и2, 3и4 смежные, которые в сумме дают 180град.=130+50 Тогда, соответственные углы 1и5 равны по 50 град, 4и6 равны по 130град. Также и углы 2и7=по 130 град, как соответственные и углы 3и8= по 50град углы 6и7 равны по 130град., как внешние накрест лежащие углы, как и углы 5и8 равны по 50град. как внешние накрест лежащие углы