задание 2 Правило существует В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника , подобных исходному.
задание 1 внешний угол треугольника равен сумме двух углов не смежных с ним, то А+В= 60 . Треугольник АВС равнобедренный и углы при основании равны, то есть А=В=30 проведем из угла С высот. СН. Тогда угол НСА равен 30 градусов, катет лежащий против угла 30 гр. равен половине гипотенузы. следовательно СН=1/2АС=1/2 * 37 = 18,5 см.
равностороннем треугольнике сторона равна 2 корня из 3. Найдите радиус окружности, вписанной в треугольник 2) Около остроугольного АВС описана окружность. Точка О пересечения серединный перпендикуляров удалена от прямой АВ на 6 см. Найдите угол ОВА и радиус окружности, если угол АОС=90, угол ОВС=15 3) В параллелограмм АВСD с углом А=45 и стороной AD=10 корней из 2 (дм), вписана в окружность: а) найдите радиус окружности б) найдите сумму расстояний от вершины D до точек касания окружности с прямыми AD и DC. 4) Даны окружности диаметра АВ и точка О внутри нее. Используя только линейку без делений, опустите перпендикуляр из точки О на прямую АВ.
1. х-у=108° 2. х/у=4/1
1. х-у=108° 2.х=4у
Подставляем 4у вместо х в первое уравнение системы:
4у-у=108°
3у=108°
у=36°
тогда х=36°*4=144°
Сложив получившиеся величины односторонних углов
144°+36°=180°⇒прямые параллельны
Признак параллельности прямых :если при пересечении двух прямых секущей сумма односторонних углов равна 180°,то прямые параллельны