Ну, я надеюсь, дано ты запишешь сам. Вот решение, как сделаешь рисунок, все будет понятно: т.к. угол DAC=30 градусам, значит катет лежащий на против него равен половине гипотенузы (а она АС равна 12), а значит DC равен 6. Т. к. ABCD прямоугольник, значит и противоположная сторона АВ равна тоже 6. АС диагональ и она делится в точке пересечения по палам и следовательно АО = 6. В треугольнике АОВ все углы 60, т.к. угол DAO = 30 и следовательно угол ОАВ равен 90-30=60, и значит все углы тоже равны 60. И значит периметр треугольника равен 6+6=6= 18. Вот и все.
Ну, я надеюсь, дано ты запишешь сам. Вот решение, как сделаешь рисунок, все будет понятно: т.к. угол DAC=30 градусам, значит катет лежащий на против него равен половине гипотенузы (а она АС равна 12), а значит DC равен 6. Т. к. ABCD прямоугольник, значит и противоположная сторона АВ равна тоже 6. АС диагональ и она делится в точке пересечения по палам и следовательно АО = 6. В треугольнике АОВ все углы 60, т.к. угол DAO = 30 и следовательно угол ОАВ равен 90-30=60, и значит все углы тоже равны 60. И значит периметр треугольника равен 6+6=6= 18. Вот и все.
BH медиана ⇒ AH = HC ⇒
по свойству медианы к гипотенузе AH = HC = BH = 5 см
AM = BM = MC = 10 см наклонные к плоскости равны ⇒
равны проекции этих наклонных на плоскость AH = BH = CH ⇒
ΔAHM = ΔBHM = ΔCHM по трем сторонам (MH - общая) ⇒
MH ⊥ (ABC) ⇒
Расстоянием от точки М до плоскости треугольника будет длина перпендикуляра MH
ΔBMH прямоугольный : ∠BHM = 90°. Теорема Пифагора
MH² = BM² - BH² = 10² - 5² = 75
MH = √75 = 5√3
ответ: расстояние от точки М до плоскости ΔABC равно 5√3 см