, найденный нами катет является меньшим, поэтому вращение треугольника происходит вокруг него, при этом образуется конус. Осевое сечение конуса представляет собой равнобедренный треугольник, в котором боковые стороны равны образующей, а основание равно диаметру окружности, лежащей в основании конуса, в данном случае образующая равна гипотенузе, диаметр-двум большим катетам данного треугольника, а высота-меньшему катету, значит площадь сечения равна:
Зная, что сумма углов в треугольнике равна 180°, найдем ∠В.
∠В=180-∠А-∠С=180-60-80=40°.
∠С=80°, CD-биссектриса ∠С, значит ∠DCВ=40°.
В ΔСDВ ∠DCВ=∠DBC=40° ⇒ΔСDВ-равнобедренный, DB=CD=6см.