Как я поняла: так как треугольник abc равнобедренный,то можем найти градусные меры углов,из условия следует что угол В в четыре раза меньше угла С,то есть обозначаем угол В за икс,а угол С в четыре раза больше то есть 4Х. составляем уравнение: 4х+4х+х=180 9х=180 х=20.отсюда следует что угол С=80 Найдём внешний угол при вершине Р. Так как этот угол образован пересечением биссектрис,то образуется равнобедренный треугольник АРС. Так как это биссектрисы,то угол РАС=РСА =80/2=40 .сумма углов треугольника равна 180 следовательно угол Р в треугольнике АРС=180-2*40=100,нам нужен внешний угол следовательно(т.к сумма смежных углов равна 180) 180-100=80 градусов ответ:внешний угол при вершине Р =80 градусам.
Ну, начнем с того, что АВС - равнобедренный, и основание его равно 18+6 = 24 см. Далее приготовимся считать площадь ADC - для этого нам нужна его высота. Теперь быстренько посчитаем высоту АВС, ведь это та же самая высота.Она равна по пифагоровым штанам корню квадратному из разности 13 в квадрате (гипотенуза прямоугольного треугольника, образованного высотой АВС, боковой стороной и половиной основания) и 12 в квадрате (это как раз половина основания).То есть она равнакорню квадратному из (169-144=25).А это 5. Значит площадь ADC будет:основание умножить на высоту и все пополам, т.е. 6 * 5/ 2 = 15
S = 1/2 x R в квадрате х n (количество сторон) х sin (360/n)
8 корней из 2 = 1/2 x R в квадрате x 8 x sin (360/8)
8 корней из 2 = R в квадрате x 4 x sin 45
8 корней из 2 = R в квадрате x 4 x корень 2 /2
8 корней из 2 = R в квадрате х 2 х корень 2
R в квадрате = (8 корней из 2 ) / 2 х корень 2 = 2