1) 1) Сумма углов треугольника = 180 градусов
2) 180-90=90 сумма величин двух острых углов, т.к. один из углов прямой, т.е. =90 градусов
3) x+(x+24)=90
4) 2x=66
5) x=33
6) x+24=33+24=57
ответ: первый угол равен 33 градуса, второй — 57 градусов.
2) Пусть меньший угол х, тогда больший угол 4х
В сумме два острых угла образуют 90 градусов, значит:
х+4х=90
5х=90
х= 18 - это меньший угол
18*4=72 градуса - это больший угол
ответ: 18 градусов и 72 градуса
3) если угол С прямой, то А+В=90, но угол В=2 угла А. А+2А=90.
А=30. ВС - катет прямоугольного треугольника, лежащий проти в уга в 30 градусов.
вс=1/2 АВ
ВС=9
4) Т.к. угол DBC = 60 градусам, а угол CDB прямой, то угол DBC = 30 градусам, следовательно СВ = 8*2= 16( Т.к сторона лежащая против угла в 30 градусов равна половине гипотенузы), тогда высота СD = 8 корней из 3( Находим через теорему Пифагора), следовательно СD в квадрате = DB*АD, 64*3=8*AD, AD = 24
Вот так наверно :)
Продолжим касательные до их пересечения в т.Р.
ОА⊥АС и О1С⊥АС ( радиусы, проведенные в точку касания.
Из т.О проведем параллельно АС прямую до пересечения с СО1 в т.Н.
Четырехугольник АОНС - прямоугольник. СН=АО=r=12 ⇒
О1Н=20-12=8
⊿ ОНО1 - прямоугольный. ОО1=12+20=32.
По т.Пифагора
ОН=√(OO1²-O1H²)=√(32²-8²)=√960=8√15
cos∠HOO1=OH:OO1=![\frac{8 \sqrt{15} }{32} = \frac{ \sqrt{15} }{4}](/tpl/images/0880/4757/341f4.png)
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.⇒
РС=РD, PA=PB ⇒ BD=AC=8√15
∆ СРD равнобедренный, ∆ РАВ равнобедренный ⇒
биссектриса АО1 перпендикулярна АВ и СD
∠СРО1=∠DPO1
Расстояние между АВ и СD - длина общего между ними перпендикуляра.
Проведем ВМ || РО1
ВМ⊥АВ и ВМ⊥СD.
∆ ВМD прямоугольный. ∠МВD=∠O1PD
ВМ=BD•cosO1PD=8√15•√15:4=30