Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
21 см
Объяснение:
периметр Δ ВОС=ВС+ОС+ВО
ВС=AD=8см (т.к. ABCD-параллелограмм)
ОС=АС/2 ВО=BD/2 (точкой пересечения диагонали параллелограмма делятся пополам)
ОС=14/2=7см ВО=16/2=6см
Р=8+7+6=21см