Рассмотрим ΔАВС. ∠В=180-∠А-∠С=180-75-35=70°. ∠DВС=1/2∠АВС=35°⇒ ∠DВС=∠С, ΔВDС является равнобедренным, BD=DC. В ΔАВD ∠А больше ∠АВD, значит ВD больше АD, ВD=DС⇒ DС больше АD.
Решение: Радиус окружности описанной вокруг равностороннего треугольника находится по формуле: R=√3/3 - где а-сторона треугольника Высота в таком треугольнике можно найти по формуле: h=√3/a*a - где а -сторона треугольника По этой формуле найдём сторону равностороннего треугольника: а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см) Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности: R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
Сторона c- гипотенуза прямоугольного треугольника, а т.к. она лежит напротив угла С, то этот самый гол будет равен 90 градусам. По теореме Пифагора найдём сторону b в прямоугольном треугольнике с прямым углом С: 17^2=8^2+b^2 b=√17^2-8^2=√225=15 По таблице Брадиса найду примерное значение угла В через его синус, который равен 15:17=0,88235. Его примерная градусная мера равна 62-ум градусам. Отсюда находим примерную градусную меру угла А=180-90-62=28. ответ:b=15 см,угол С=90 градусов, угол А=28 градусов, угол В=62 градуса.
∠DВС=∠С, ΔВDС является равнобедренным, BD=DC.
В ΔАВD ∠А больше ∠АВD, значит ВD больше АD, ВD=DС⇒
DС больше АD.