Длина клумбы - это длина окружности. Длина окружности: С = 2πR, где R - радиус окружности. R = C : (2π) ≈ 19,8 : (2 · 3,14) = 19,8 : 6,28 ≈ 3, 15 (м) Площадь круга: S = πR² = 3,14 · 3,15² ≈ 31,16 (м²)
Пусть a - основание, h - высота к основанию, b - боковая сторона, H - высота к ней. Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения. 1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О. 2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника. 3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α; 4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1. 5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника. Это всё.
Касательные AN и AM равны и образуют с радиусами ON и OM соответственно прямые углы. Т.е. AN перпендикулярна ON, и AM перпендикулярна OM. Касательными и радиусами образуется четырехугольник OMAN. Сумма углов = 360 градусов. ∠MAN = 360 - ∠MON - ∠ANO - ∠AMO = 360-120-90-90=60 градусов. Рассмотрим треугольники ΔANO и ΔAMO - они равны по двум сторонам(AN=AM, MO=NO) и углу между ними (∠ANO=∠AMO=90) эти треугольники прямоугольные. Диагональ делит OMAN пополам. ∠MAO=∠NAO=30. Катеты лежащие напротив угла в 30 градусов равны половине гипотенузы: OM=ON=OA:2=12:2=6см Используем т.Пифагора, чтобы найти AM и AN.
Длина окружности: С = 2πR, где R - радиус окружности.
R = C : (2π) ≈ 19,8 : (2 · 3,14) = 19,8 : 6,28 ≈ 3, 15 (м)
Площадь круга: S = πR² = 3,14 · 3,15² ≈ 31,16 (м²)