пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
Смотрите рисунок. Нахождение стороны квадрата сводится к нахождению диаметра окружности. О-центр окружности. АК её диаметр. ОМ - перпендикуляр на АВ. АО и ВО - радиусы окружности. Значит ΔВАО - равнобедренный. В таком треугольнике перпендикуляр, опушенный из угла при равных сторонах является, так же и медианой. Значит ВМ = АМ = АВ/2 = 12√3+2 = 6√3 см. <ОАМ = 30 градусов. Значит МО = АО/2. Примем АО= R. Следовательно МО = R/2. Gо теореме Пифагора имеем АМ²+ОМ² = АО². Или (6√3)² +(R/2)² = R². Или 36*3 + R²/4 = R². Приведя к общему знаменателю имеем. 36*12 = 3R². Или 12*12=R². Отсюда R = 12 см. Сторона квадрата, описанного вокруг этой окружности, равна её диаметру = 2R = 2*12 = 24 см.