М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
6466743532
6466743532
04.07.2021 13:05 •  Геометрия

Даны точки a(-4; 3),b(3; 10); c(6; 7); d(-1; 0) докажите что а) ab=dc, abiidc б)определить вид четырёхугольника и вычислить его периметр

👇
Ответ:
Sabinaaa33
Sabinaaa33
04.07.2021
1) ав=дс, если расстояния между точками равны
найдем ав= √(x₂- x₁)²+ (y₂ - y₁)² = √(3 - (-4))² + (10 - 3)² = √(7² + 7²)=
=√(49 + 49) = √98
сд =√(x₂ - x₁)² + (y₂ - y₁)² = √(-1 - 6)₂ + (0 - 7)₂ =
= √((-7)₂ + (-7)₂) = √(49 + 49) = √98 
ч.т.д
ABIIDC, если ад=вс
ад= √(-1 - (-4))² + (0 - 3)² = √(3² + (-3)²) = √(9 + 9) = √18
вс=√(6 - 3)² + (7 - 10)² = √(3² + (-3)²) = √(9 + 9) = √18

равны, ч.т.д
2)
по признакам, данная фигура будет является прямоугольником
чтобы найти периметр, сложим все стороны
3√2 + 3√2 + 7√2 + 7√2 = 20√2
4,4(28 оценок)
Открыть все ответы
Ответ:
максим1718
максим1718
04.07.2021
Через прямую можно провести бесконечное множество плоскостей, это апиори. Если точка "а" не принадлежит прямой, то через нее и прямую можно провести только одну плоскость, так как прямая - это линия проведенная через 2 точки (не имеет значения в какой части прямой они находятся) а точка "а", по сути является третьей точкой опоры, а через 3 точки опоры можно провести только одну плоскость. Отсюда и вытекает, что поместив точку "а" на прямую, мы сможем провести через неё бесконечное множество плоскостей, так как она станет частью этой прямой и наоборот.
4,5(8 оценок)
Ответ:
vamagic2001
vamagic2001
04.07.2021
Пусть в прямоугольный треугольник ABC вписан квадрат CDEF (см. рисунок). Здесь AC=a, BC=b.
Заметим, что диагональ CE квадрата является также биссектрисой исходного треугольника. Пусть CE=d, тогда CD=d√2/2 - сторона квадрата меньше диагонали в √2 раз. Периметр квадрата равен (d√2/2)*4=2√2d, а площадь равна (d√2/2)²=d²/2. Таким образом, чтобы найти периметр и площадь квадрата, достаточно выразить биссектрису прямого угла d через a и b.

Площадь прямоугольного треугольника равна половине произведения катетов, в нашем случае S=ab/2. Теперь воспользуемся другой формулой площади - S=1/2*a*b*sin(C), где a,b - соседние стороны треугольника, а sin(C) - угол между ними. Тогда S(ACE)=1/2*AC*CE*sin(45), S(BCE)=1/2*CE*BC*sin(45) (углы ACE и BCE равны 45 градусам). Так как S(ACE)+S(BCE)=S(ABC), мы можем записать уравнение с одним неизвестным CE:
1/2*AC*CE*sin(45)+1/2*CE*BC*sin(45)=ab/2
AC*CE*sin(45)+CE*BC*sin(45)=ab
CE(AC+BC)=ab/sin(45)
CE=ab/(a+b)sin(45)
Таким образом, d=ab/(a+b)sin(45). Получаем, что периметр квадрата равен 2√2d=2√2ab/(a+b)sin(45)=4ab/(a+b), а площадь равна d²/2=(ab/(a+b)sin(45))²*1/2=a²b²/(a+b)².
Впрямоугольный треугольник с катетами a и b вписан квадрат имеющий с треугольником общий прямой угол
4,6(87 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ