а)в основании пирамиды прямоугольник. по теореме пифагора ас2=ad2+dc2=122+52=144+25=169ac=13.δ asc – равнобедренныйsa–ac=13перпендикуляр ah – высота равнобедренного треугольника, которая одновременно является и медианой.значит,sh=hcб)рассмотрим треугольник равнобедренный (sb=sc=13)треугольник sbc.высота sp равнобедренного треугольника делит сторону вс пополам.вр=рс=6в а) доказано, что sh=hc,значит hp – средняя линия δ sbc и hp|| sbпроводим pf ⊥ sb и hk || pf ⇒ hk ⊥ sb.hk=pfpf– высота прямоугольного треугольника sbp.sb=13bp=6sp=√sb2–bp2=√169–36=√133так как sδ sbp=(1/2)sb·pf и sδ sbp=(1/2)·bp·sp, тоpf· sb=bp·sb ⇒ pf=6·√133/13hk=pf=6·√133/13о т в е т.6·√133/13
нижнее основание ad = 33верхнее bc = 15точка пересечения диагоналей ообозначим угол oad = x, с учётом свойст биссектрисы и накрест лежащих углов этому же иксу равны и оав, и овс, и всо.треугольник авс равнобедренный ав = всопускаем высоту вк на adbk^2 = ab^2 - ak^2 = 15^2 - ((33-15/2)^2 = 12^2s = 12 * (15+33)/2 = 2882) сумма длин радиусов вписанной и описанной окружности r + r = 7 sqrt(3)/2обозначим сторону буквой амедиана (высота, биссектриса) равна a sqrt(3)/2две трети медианы - радиус описанной окружностиодна треть - радиус вписанной (эти два утверждения справедливы только для правильного треугльника)сумма радиусов нам данаa sqrt(3)/2 = 7 sqrt(3)/2a = 7периметр 21s = 7 * 7 sqrt(3)/4 = 21 sqrt(3)/4
p = (13+14+15)/2 = 21
Площадь по формуле Герона
S = √(21*(21-13)*(21-14)*(21-15))
S = √(21*8*7*6) = 7*2*√(3*2*6) = 7*2*6 = 84
радиус вписанной окружности
S = rp
84 = r*21
r = 84/21 = 4
Радиус описанной окружности
R = a*b*c/(4S)
R = 13*14*15/(4*84) = 65/8