Задача 1.
АВС - прямоугольный. С=90
АВ=8
угол АВС= 45
Найти: а) АС
б)СD
Решение.
а)
1)тр. АВС равнобедренный т. к. угол А=В=45гр.
Значит, АС=СВ
2)По теореме ПИфагора.
64=x( в квадрате) + х(в квадрате)
2х(в квадрате)= 64
х= 4корня из 2
б)
1)т. к. АВС-равнобедренный, то высота СD является и медианой и биссектрисой. Следовательно, АD=DB= 4 /
2)Рассмотрим тр. СDВ. Он равнобедренный и прямоугольный. Угол С равен углу В равен 45гр. (углы при сновании. Значит СD=DB=4
ответ: а)АС=4корня из 2
б)CD=4
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°