Для четырех точек a, b, c и d известно, что вектор ab= вектору cd. докажите, что середины отрезков ad и bc . докажите обратное утверждение: если середины отрезков ad и bc , то вектор ab=вектору cd. напишите подробное объяснение, . заранее
AB = CD => AB || CD, |AB|=|CD|соеденим точки A и C, B и DПолучился параллелограмм так как у четырехугольника две противоположные стороны равны и параллельны. По св-ву параллелограмма, диагонали паралл. точкой пересеч-я делятся пополам. Тогда так как AD, BC - диагонали, то середины этих отрезков совпадают в точке их пересечения.Обратное утв-ие:Если середины отрезков AD и ВС совпадают, то вектор АВ= вектору СDДок-во: Достроим до 4-угольника ABCD, AD, BC-диагонали. Тогда У четырехугольника диагонали точкой пересечения делятся пополам. Следовательно это параллелограмм.Тогда AB = CD так как их длины равны, как противоположные стороны параллелограмма, и направлены они параллельно в одну сторону.
Периметр= 264. Т.к треугольник равносторонний, то все стороны равны. А так как периметр-это сумма всех сторон, то чтобы найти одну из равных сторон, нужно разделить периметр на 3. Получаем: 264:3=88 см(каждая сторона) Теперь, чтобы найти площадь, нужно найти высоту. Это биссектриса, медиана и высота любой из вершины данного треугольника. Если вы учитесь в 9 классе, то это решается только так. Так как она делит сторону, к которой приведена, пополам, то получаем треугольник, со сторонами- х,88,44. По теореме Пифагора: Х^2+44^2=88^ Х=44√3 Площадь равна 88*44√3=3872√3. Но если ты учишься в 6-8, то ничем не могу Но ответ этот.
Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°